The FreeBSD Audit System

Robert N. M. Watson
University of Cambridge
TrustedBSD Project

rwatson@FreeBSD.org

Abstract

This paper describes the Common Criteria security event
auditing implementation added to the FreeBSD operat-
ing system by the TrustedBSD Project. Audit is a criti-
cal element in operating system security evaluation and
operation, but both the standards-based and operational
requirements are complex. This paper describes the re-
quirements, FreeBSD kernel implementation, extensi-
ble file format adopted from OpenSolaris BSM, mech-
anisms used for processing and maintaining the audit
trail, and the OpenBSM audit library and tool set. Of
importance is not just the content of audit records, but
also the reliability guarantees associated with the queu-
ing and delivery mechanisms.

1 Introduction

This paper describes the security audit system developed
by the TrustedBSD Project for the FreeBSD operating
system [12]. Security event auditing refers to the capa-
bility to perform detailed and reliable logging of security
events, and is a necessary feature for the deployment of
systems in many security-sensitive environments.

We describe the operational and standards require-
ments for auditing, the design and implementation of
data gathering and record management, and an audit
record format. The audit implementation involves mod-
ifications to both the kernel and user space code in
FreeBSD, and involve collecting and managing kernel
and application audit data. Audit is present in many
commercial UNIX operating systems as it is required for
Common Criteria evaluation. However, there is a signifi-
cant gap relating to the design choices systems literature,
which we hope to help fill via a worked example.

Portions of the design and implementation of audit on
the FreeBSD operating system platform are derived from
the audit implementation developed by the authors for
inclusion in Apple Computer’s Mac OS X system [6].
The Darwin implementation released by Apple under the
BSD license has become the foundation for the FreeBSD
implementation [1]. The design of both the FreeBSD
and Darwin audit implementations has been strongly in-
fluenced by the published Solaris BSM audit API and
audit trail format, de facto industry standards that are
used by a large number of existing applications.

Wayne Salamon
TrustedBSD Project

wsalamon@FreeBSD.org

2 Requirements for Event Auditing

A modern, trusted operating system contains many com-
ponents that are used to establish the basis of trust. One
of these components is audit, a facility that allows the
administrator to trace a broad range of security-relevant
events to the authenticated user that initiated that event.
In the operating system domain, the user is represented
by a process executing some task on behalf of the user.
The requirement that the event be traced to an authenti-
cated user is important, as it means that normal UNIX
process credential uids are not sufficient: they may
change as part of setuid applications that continue to act
on behalf of the original user.

An important design choice for an audit subsystem is
the selection of events that must be audited. The CAPP
protection profile requires that the following classes of
events be supported [7]:

Controlled Operations Access to controlled files, net-
work services, and other objects. In practice, any
access that involves an access control decision,
such as a privilege check, permission check, or
ownership check.

Authentication Authentication success and failure, use
of security services, etc. These are typically user
space constructs in UNIX.

Security Management Change of user credentials, au-
dit controls, etc, which consist largely of auditing
changes to configuration files in /etc in UNIX.

Common applications of security audit include post-
mortem analysis, intrusion detection systems, and gen-
eral system operation monitoring. A key requirement,
both from standards and a practical perspective, is that
while the audit system may be able to capture very de-
tailed information, that it can be configured not to do so.
Typical dimensions of interest are the identity of the au-
thenticated user, object properties such as owner, type,
and method, and the nature and results of any access
control decisions. By varying the granularity of the au-
dited events, the administrator can control the amount of
information that is contained in the audit logs, as well
as monitor the system for specific types of events, such
as attempted administrative access. Pre-selection occurs
when a decision is made about whether to log events

while the event is occurring; post-selection occurs dur-
ing review or reduction of existing audit trails.

The audit system records information about accesses
to controlled objects by process subjects. Kernel events
are systems calls and mostly correspond to object ac-
cesses that are mediated by discretionary access con-
trols. However, many other types of accesses are au-
dited, such as use of root privilege, system shutdown,
and changes to the audit system configuration itself.

The kernel “owns” the audit log, and is the only writer,
providing for a non-bypassable audit trail. However,
many security-relevant events are implemented in appli-
cations. In contrast to the existing syslog facility [5],
untrusted processes are not permitted to write directly to
the audit trail. These programs must therefore submit
audit records to the kernel for inclusion in the audit log.
UNIX discretionary access controls are typically used to
protect both the audit trail and configuration.

A key reliability concept is the correspondence be-
tween auditable events and generation of audit records.
Standards require a strong mapping: if an event is au-
ditable, and the event is to be allowed to occur, it
must be audited. This presents a significant reliabil-
ity challenge—in the event of an exhaustion of space,
should the event be permitted to occur? Two undesirable
choices are available: the system as a whole may halt
due to store exhaustion, or that events may occur with-
out proper auditing. Standards dictate that the systems
must be able to fail stop in the presence of an audit fail-
ure, but that this may be configurable behavior. When an
external failure occurs, such as power loss, the audit sys-
tem must also be able to place a defined upper bound on
record loss, typically implemented via a fixed bound on
the number of records queued for asynchronous storage.

2.1 Common Criteria and Controlled Ac-
cess Protection Profile

The Controlled Access Protection Profile (CAPP) [7] is
part of the Common Criteria (CC) [2] suite of informa-
tion assurance documents. The goal of CC is to estab-
lish a guide for developing and evaluating an informa-
tion technology product in regards to its security fea-
tures. Common Criteria deals with the implementation
of the product and not the administration. The CC ad-
dresses the confidentiality, integrity, and availability of
information maintained within the system, and concen-
trates primarily on threads from human activities. Au-
diting addresses critical traceability requirements in sys-
tems evaluated under the CC.

A protection profile is used to lay out a set of secu-
rity requirements that a system should fulfill. There are
many protection profiles defined under the CC frame-
work; CAPP deals specifically with the discretionary ac-
cess controls that are used to mediate access to data by

users, roughly corresponding with the C2 class of the
Trusted Computer System Evaluation Criteria (TCSEC).
CAPP requires an audit capability with certain features,
such as auditing of subject and object interactions, lo-
gin/logout events, and administrative control of audit-
ing, and many more. The implementation of auditing on
FreeBSD meets all of these requirements, although no
formal evaluation has taken place at the time of writing.

3 Structure of an Audit Implementation

The FreeBSD audit implementation consists principally
of the following components:

sys/security/audit Reliable kernel audit record queue,
system call auditing.

contrib/openbsm BSM API library, documentation,
and audit-related utilities.

etc/security Configuration files.

usr.sbin/auditd Audit management dacmon.

As audit support must be non-bypassable and reliable,
audit record queuing and audit event capture for the ma-
jority of auditable events occurs in the kernel. In addi-
tion to audit records generated in the kernel, trusted user
applications may also submit records to the kernel using
the audit () system call. Review and management of
the audit trail is performed using user space applications,
subject to the permissions associated with the audit trail
and configuration files.

3.1 The BSM Audit Trail Format

header | foken |token | subject | return | trailer

Figure 1: Audit Record Format

The format chosen for the audit trail is defined by
Sun Microsystems as part of the Basic Security Mod-
ule (BSM) [11]. The rationale for choosing this format
is that it is a de facto audit trail standard, permitting the
use of existing processing and management tools. Fur-
thermore, the BSM record format defined for this project
is designed to be independent of processor architecture,
and may be easily extended to support features present
in FreeBSD that are not present in Solaris.

A BSM audit log consists of one or more audit
records. Each record is composed of a series of tokens
representing data elements, with every record containing
header, subject, return, and trailer tokens. As type and
length information is included with each record, parsers
are able to skip records they do not recognize, resulting
in limited forward compatibility as new record and to-

ken types are added. The audit record format is shown
in Figure 1.

The header token contains general information about
the audit event, including the total record length, event
type, and a timestamp. The subject token contains user
IDs, PID, and other information about the process. The
return token contains the system call return value as well
as the success/failure indication. The trailer token closes
out the audit record and stores the entire length of the
audit record.

There are many other token types used in an audit
record, and each type is based on the nature of the ob-
ject represented. For example, a file object is repre-
sented by two token types: the path token, and the
attribute token, containing ownership and other in-
formation about the file object. Figure 2 shows an exam-
ple of a complete audit record.

3.2 Audit Events and Classes

In the FreeBSD kernel, audit events are associated with
system calls. The selection of which system calls are
audited is based on several factors. If the call is used
to access a protected object, super-user privilege is re-
quired, or the audit configuration is changed, then an
audit record may be created. In practice, the majority
of system calls fall into the above categories, by virtue
of traversing a file system path (requiring access control
checks), or interacting with other processes.

Event classes permit the configuration of audit pre-
selection based on broad categories of related audit
events. Audit events are assigned to zero or more
classes; example classes include process, network, as
well as several classes associated with file access. The
kernel maintains an internal table that maps events
to classes, and this table can be changed via the
auditon () system call. The initial event to class map-
ping is stored in an audit configuration file that is loaded
into the kernel when auditing is started.

Each user name can have an associated set of event
classes to audit. There are two audit class masks asso-
ciated with the user’s processes: a mask selecting suc-
cessful events, and a mask selecting unsuccessful events.
Using the audit event masks, the administrator can finely
control the auditing of events for each user. These masks
are stored as part of the process control block and are set
when the user logs in.

4 FreeBSD Changes

McAfee Research, under contract to Apple, Inc., added
audit support to the Darwin 7.x kernel, which is the foun-
dation for the Mac OS X 10.3 release. All of the source
code is released under a BSD open source license, in-
cluding the kernel event auditing, user space programs,
and modifications to existing programs such as 1ogin.

The Darwin source code forms the basis for FreeBSD
audit, although many changes have been made after the
initial merge. Some of the changes have been submitted
back to the Darwin maintainers.

Two parallel projects were created under the
TrustedBSD project to manage the audit source code
for FreeBSD. One project manages the core audit func-
tionality in the kernel and user space programs. The
other project, OpenBSM [8], manages the common au-
dit definitions, and libraries used to read and write audit
records.

This section describes the source code used within the
kernel. The tools and applications used for auditing are
described in Section 5. The OpenBSM project and re-
lated code is discussed in Section 6.

4.1 Kernel Audit Processing

The changes to the FreeBSD kernel can be grouped into
three areas: auditing of system calls; managing audit
records internally; and the commitment of audit records
to the file system along with user space notifications.

System calls form the central point where events in
the kernel that require auditing take place. The reason is
that all controlled objects are accessed via system calls,
with the appropriate access controls invoked. The au-
dit record that is created for these events will include
information about the process (subject) credentials and
the object traits (ownership, etc.). Audit event identi-
fiers are assigned to system calls in system call tables;
several system calls may share the same event identifier
if the underlying service is the same. For native system
calls, the assignment occurs in syscalls.master;
for ABI emulation, the assignment occurs in the system
call table for the ABI implementation.

Figure 3 shows the generation of the audit
record within the kernel. On system call entry
(audit_syscall_enter()), the process’s audit
masks, or the default audit mask, are used to decide
whether an audit record is to be created. This is an
opportunity for the audit implementation to suspend
execution of the thread before an auditable action can
be performed if the queue depth has reached its limit,
or if insufficient resources are available to successfully
commit the audit record to disk. If selected, then the
kernel form of the audit record is added to the thread,
and subject information is captured.

Once the system call is entered, the parameters and
object information are captured and stored in the ker-
nel audit record. In most cases, the object informa-
tion is captured near the beginning of the system call.
For path name lookups, however, the object information
(the vnode) is captured in the centralized lookup code
(namei (), lookup ()), where paths are copied into
the kernel.

header,188,1,open(2)
argument, 3, 0x180, mode
argument, 2, 0xa02, flags

- read,write,creat,0,Wed Oct 19 19:50:51 2005,

+ 290 msec

path, /usr/home/wsalamon/audit3/tools/regression/audit/test/file/temp2.dukFVv
subject, 666, root,wheel, root,wheel, 500,777,99,0.0.0.66

return, success, 23
trailer, 188

Figure 2: Example Audit Record

syscall()

audit_syscall_enter()

system call

audit_commit()

cv_signal()

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:
l audit_syscall_exit()
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 3: Audit Record Creation Kernel Flow

At system call exit (audit_syscall_exit()),
further pre-selection is applied on the return value, and
the record is either committed to the record queue or
abandoned. The audit_worker kernel thread then is
signaled to begin asynchronously processing the record.
For the audit () system call, two audit records are
committed: an audit record describing the system call
itself, and the user-provided audit record.

The internal queue of audit records is processed by a
kernel thread audit_worker, which is represented in
Figure 4.

Records are removed from the queue by
audit_record.write (), which checks the file
system for sufficient free space, and for the need for
log rotation. If any limit is reached, a trigger is sent to

cv_wait()

TAILQ_REMOVE()

'

audit_record_write()

'

kaudit_to_bsm()

'

vn_rdwr()

Figure 4: Audit Worker Kernel Task

auditd so the audit trail can be managed. If necessary,
audit will be suspended, and if the record cannot be
written and the kernel is so configured, the kernel will
panic. Prior to panicking the system, all pending audit
records in the event queue will be flushed to disk,
allowing the system to fail stop when no further auditing
is possible. While more sophisticated recovery behavior
is possible, most possible recovery activities employ
privileged operations that cannot be permitted to occur
without auditing; unless specifically configured, the
default is to drop audit records when space is exhausted.

If the file checks succeed, kaudit_to_bsm() con-
verts the audit data from the internal kernel data struc-
ture to a BSM audit record that can be written to the
audit trail. During the conversion process, BSM tokens
are created describing the event, including identifying
the event type and a set of event-related tokens describ-
ing any objects and additional arguments. Finally, a sub-
ject token describing the process, return code token, and
trailer token are generated. The example record in Fig-
ure 2 shows two argument tokens and a path token rep-
resenting the file object, along with the header, subject,

return, and trailer tokens that are added to every record.
After token generation, the complete record is written to
the file system with vn_rdwr ().

4.2 Audit Related System Calls

The auditon () system call controls the kernel au-
dit configuration, such as enabling/disabling, setting of
global and process audit masks, creating audit event to
class mappings, and setting the maximum audit log file
size. This call is also used to set the policy for what ac-
tion to be taken when audit fails: drop the record and
continue, or panic.

Several other system calls were added to get and set
audit masks and other information for the current pro-
cess. The auditctl () system call is used to set the
audit log file name. Finally, the audit () system call is
used to submit audit records for inclusion in the log.

4.3 Kernel to User Space Communication

Communication from the kernel to the audit daemon is
done via the /dev/audit special file, while commu-
nication from the daemon to kernel is done via system
calls. The special file is not writable, and is only used to
send triggers from the kernel to the daemon, such as the
log rotation trigger. When an application wants to send
a trigger to the daemon (audit shutdown, for example),
the trigger is routed through the kernel: the application
uses the auditon () system call, and the kernel sends
the trigger.

As the kernel is the only writer to the log file, it is
responsible for monitoring the state of the file and in-
forming the audit daemon when action must be taken.
Several triggers are defined to send a status to the audit
daemon:

OPEN NEW The current audit log is full. The maxi-
mum size of the audit log is a configurable param-
eter. This limit is soft and auditing continues.

LOW SPACE Free space on the log’s file system is low.
The amount of minimum free space is configurable.
This limit is soft and auditing continues.

NO SPACE Free space on the log’s file system is ex-
hausted. This limit is hard: either a panic occurs,
or audit is suspended.

5 User Space Components

In order to fully support the audit requirements, sev-
eral application programs are part of the audit system
in FreeBSD. The core application is the audit daemon,
responsible for audit configuration management and au-
dit trail files. Also included are audit reduction tools,
and modifications to a number of management tools and
security components to submit necessary audit records.

5.1 The Audit Daemon

The audit daemon, auditd, runs early in the boot pro-
cess, prior to any user logins. The primary duty of the
audit daemon is to manage the audit log files, but is also
responsible for several other aspects of the audit system,
including startup and shutdown. Audit records are sub-
mitted by the daemon for each of the startup, shutdown,
and rotation events, as mandated by CAPP. In addition
to the triggers mentioned in Section 4.3, other triggers
accepted by the daemon are:

READ FILE The audit daemon will read the configu-
ration files and apply any changes to the audit con-
figuration.

CLOSE AND DIE Close the audit log file, disable au-
diting, and exit.

5.1.1 Audit Startup and Shutdown

The audit daemon is responsible for audit startup and
shutdown. During startup, the daemon loads the event to
class mapping into the kernel. Next, the daemon sends
the name of the audit log file to the kernel using the
auditctl () system call. This call will also cause au-
diting to be started.

During audit shutdown, the daemon informs the ker-
nel that auditing is to be disabled, and renames the cur-
rent log file to contain the end timestamp in the name.

S5.1.2 Audit Log Management

When the audit daemon rotates the log file, the new file
name is passed to the kernel, and the previous file is re-
named. The naming convention uses start and end times-
tamps in order to easily recognize the period of auditing
that each file captures.

The audit daemon is responsible for managing the on-
disk log files, but does not monitor the status of the cur-
rent log file, which is the responsibility of the kernel, as
discussed in Section 4.3.

5.2 Audit Control Files

Several text files are used to configure the audit sys-
tem, and are stored in the /etc/security directory.
These files are consumed by the audit applications and
BSM libraries, but not directly by the kernel: the au-
dit daemon will push configuration information into the
kernel using the auditon () system call. The configu-
ration files are:

audit_class Classes of audit events.

audit_control Settings for the audit log directories, de-
fault audit masks, and minimum free space for the
file system that holds the logs.

audit_event Audit events and class assignments.

audit_user Audit masks for specific users.

audit_warn Script that is invoked at a user exit from the
audit daemon. Typically, this script logs the warn-
ing, but could take other actions such as send an
email to the administrator.

The audit configuration files are sensitive, and can be
modified only by the administrator. The audit_user
and audit_control files are not be readable by nor-
mal users in order to meet the CAPP requirement of pre-
venting users from knowing which events are audited.
Audit configuration information may only be queried
from the kernel by privileged processes.

5.3 Audit Trail Tools

The audit logs can be examined by using the tools that
were ported from the Darwin source code:

auditreduce Selects records from the audit log based
on user ID, date, event, or other criteria.
praudit Presents audit records in human-readable form.

Using these tools, administrators may perform post-
selection to identify audit records of interest, and convert
them to text; this implementation does not yet support
the OpenSolaris XML output format.

6 The OpenBSM Project

OpenBSM is a bundling of the user space components
of the TrustedBSD audit implementation, including:

e bsm kernel and user space header files

libbsm, an implementation of the BSM API with
some extensions

documentation of the BSM file format and API
sample /etc/security configuration files

praudit and auditreduce command line tools
testing components

Available under a BSD license, OpenBSM is intended to
provide a portable foundation for audit implementations
across multiple platforms, including FreeBSD and Dar-
win. Primary changes from the Apple BSM implemen-
tation are significant cleanups and enhancements, in-
cluding transition to an endian-independent file format,
extensive documentation, and support for 64-bit BSM
records present in more recent Solaris releases.

7 Future Directions

There are several areas within the audit system and ex-
ternally that will be enhanced in future releases. One
area is better integration of the Mandatory Access Con-
trol system with auditing. Also, a review of the audit
coverage for all system calls is necessary to ensure com-
pleteness.

Testing and performance analysis is also required; a
suite of test programs was ported from the Darwin code

base for use with FreeBSD, and that suite continues to
Srow.

Several applications still require audit support, such
as the ssh daemon and others that generate security-
relevant events. The audit daemon itself needs to be
tested for fault tolerance and the proper handling of audit
log rotation in extreme conditions.

8 Conclusion

This paper has described an audit system for the
FreeBSD operating system, characterized by adherence
to standards, including CAPP, and implementation of
portable APIs and record formats. The implementa-
tion is available under a BSD license as part of the
TrustedBSD Project.

Acknowledgment

The authors would like to thank Kevin Van Vechten
and Ron Dumont of Apple Computer, Inc. for support
of the OpenBSM project, and gratefully acknowledge
the contribution of the Apple BSM implementation un-
der a BSD license. We also thank Tom Rhodes of the
TrustedBSD project for contributing documentation, and
other members of the TrustedBSD development commu-
nity for the submission of bug reports.

References

[1] Apple Developer Connection: Darwin, http://
developer.apple.com/darwin/.

[2] The Common Criteria Evaluation and Validation Scheme,
http://niap.nist.gov/cc-scheme/pp.

[3] M. K. McKusick and G. V. Neville-Neil, The Design
and Implementation of the FreeBSD Operating System,
Addison-Wesley, 2005.

[4] FreeBSD, http://www.freebsd.orgq.

[5]1 FreeBSD System Log API, http://www.freebsd.
org/cgi/man.cgi?query=syslog&format=

html.
[6] Apple Mac OS X http://www.apple.com/
macosx/.

[7] National Security Agency/Information Systems Security
Organization, Controlled Access Protection Profile, avail-
able at http://niap.nist.gov/cc-scheme/
pp/pp/PP_CAPP_V1.d.pdf.

[8] OpenBSM, http://www.openbsm.org.
[9]1 OpenDarwin, http://www.opendarwin.org.
[10] OpenSolaris, http://www.opensolaris.org/.

[11] Sun Microsystems, Inc. System Administration Guide:
Security Services Part No: 816-4557, Sun Microsys-
tems, 2005. Available at http://docs.sun.com/
app/docs/prod/solaris.10

[12] TrustedBSD, http://www.trustedbsd.org.

